第4章 鳥取砂丘海岸・千代川河口域の季節変動とサンドリサイクル

1. はじめに

鳥取県では、それぞれの時代の地域や社会 の要請を受け社会基盤を推進してきた。これ により鳥取沿岸域では、河川や海岸を取り巻 く土砂環境が変化し、漁港・港湾の埋没、河 口閉塞、海岸侵食などの砂に関わる問題(土 砂問題)が顕著化した。また、このような問 題に対して、各管理者が個別に対策を行なっ てきた結果、周辺海岸では新たな十砂間題を 発生させていた。鳥取港において土砂の堆積 が問題となり、港湾管理者は航路維持のため 土砂を沖捨てする対策を行なった。しかし、 沿岸域では供給土砂が減少し海岸侵食問題が 深刻化した。このような局所最適化では、全 体としての問題解決には至らない。そこで、 砂の供給源である山地から流出先の海岸まで を一つの流砂系と考え、バランスのとれた土 砂の流れの「連続性」の確保・回復を目指し、 2005年6月に「鳥取沿岸の総合的な土砂管理

松原 雄平

ガイドライン」が策定された。このガイドラ インでは、千代川流砂系、天神川流砂系およ び日野川流砂系とポケットビーチである浦富 海岸、気高海岸および青谷海岸の6つについ て土砂管理計画を定めている。

本章では、千代川河口域およびその東に位 置する鳥取砂丘海岸を対象として、近年の千 代川河口域の動向を深浅データより、サンド リサイクル後の地形変化を写真および汀線デ ータより明らかにする。

2. 千代川河口域の動向

2-1 千代川の概要

千代川は鳥取県八頭郡智頭町の沖ノ山に源 を発し、途中、支川を合わせながら、鳥取平 野を貫通して、鳥取市賀露町より日本海に注 いでいる。(図-1)河口部には鳥取港があり、 航路としても利用されてきたが、河口の付け 替え工事が行なわれ、現在は河口と港湾は分 離している。この付け替え工事ならびに鳥取 港の防波堤等の建設により鳥取港周辺ではか なり著しい海底地形変化が生じた。

2-2 千代川河口域の深浅測量

千代川河口の付け替え工事による構造物の 影響は、波による堆砂と河川流により、河口 地形はもとより鳥取砂丘前面の鳥取砂丘海岸 にも大きな地形変化をもたらした。千代川流 砂系として一貫した土砂管理を行なう上で、 漂砂の発生源である千代川河口域の堆砂機構 を明らかにすることは必要不可欠である。そ こで、表 - 1に示すように 2004 年から 2008 年の間に 12 回にわたって実施された深浅測 量結果をもとに千代川河口部の土砂移動の動 向を明らかにする。調査範囲は図-2に示す。

表-1 深浅測量実施日と測量範囲

実が	測量範囲		
2004年	9月28日	600m ×	
	10月16日	210m	
2005年	5月31日	1800m X	
	8月4日	620m	
	10月27日	03011	
2006年	6月16日		
	8月29日	1800m ×	
	10月28日	630m	
2007年	8月7日		
2008年	58160	1700m×	
	5710日	300m	
	8月6日	1800m ×	
	11月5日	630m	

図-3 および4は2004年から2006年までの 季節変化を表したものである。

a) 2004 年 10 月から 2005 年 8 月までの水深 変化

図-2 現地調査範囲

2004 年 10 月から 2005 年 5 月においては、 0k000~0k400 付近で土砂が堆砂しており、砂 州状の地形がみられる。

図-3 深浅測量結果(2004年10月~2005年8月)

図-4 深浅測量結果(2005年10月~2006年8月)

この冬季を跨いだ期間には日平均流量 760 m³/sの出水があったが、高波浪の来襲頻度が 高かったためと考えられる。一方夏季を跨ぐ 2005 年 5 月から 2005 年 8 月の期間には波浪 は静穏期で、日平均 160 m³/sの出水があるが、 河口部の地形はほとんど変化していない。

一方、2005年5月から8月の夏季を跨ぐ期間にかけては大きな出水はなく、河床が大きく低下することはなかった。

b) 2005 年 10 月から 2006 年 8 月までの水深 変化

冬季を跨いだ 2005 年 10 月から 2006 年 6 月の期間には 0k000~0k400 の範囲において、 水深 2m 以下の浅瀬の範囲が拡大し、ミオ筋が 左岸側から右岸側に変化している。一方、夏 季を跨ぐ 2006 年 6 月から 2006 年 8 月の期間 には波浪は静穏期であり、7 月 19 日に日平均 900 m³/s を超える出水が発生し、河口の砂堆 がフラッシュされ、導流堤外の等深浅の前進 がみたて、テラス状の地形が形成されている のがわかる。

以上のことから+0k200~0k400の間に、特 に冬季においては 0k000~0k400 の範囲で地 形変化が顕著であることが明らかである。冬 季には、波の打ち込みによる河道内に土砂の 堆砂がみられる。

雨期あるいは台風時にはm、日平均で 900 m³/sの出水が発生すると、河道内の砂堆がフ ラッシュされ、河床が大きく低下することが わかった。

つぎに、もっとも地形変化が激しい河口付 近である図-2 の範囲A (0k000~0k400) に おける土砂変化量の算定結果を表-2 に示す。 測量期間ごとの平均流量および波浪データも 合わせて示す。冬季を跨ぐ 2004 年 10 月から 翌年5月、2005 年 10 月から翌年 6 月および 2006 年 10 月から翌年8月の間にはそれぞれ 約 63,000m³、約 73,000m³および約 67,000m³ の土砂が堆積している。これらの冬季の間に は日平均波高 2m 以上の発生回数が多く、波浪 が河口域における土砂堆砂に寄与していると 考えられる。

一方、夏季および秋季にあたる 2004 年 9 月 ~2004 年 10 月の間には約 11,000m³の土砂の 減少が推定された。これは、2004 年 9 月末に 台風 21 号の通過によって二日平均流量 900m³/s を越える出水が発生し、河床が大き く低下したためと考えられる。2006年6月~ 同年8月の間には梅雨前線の影響による出水 によって河口部では約41,000m³の土砂が減少 している。この時の出水量は890m³/s であっ た。

しかし、それほど多くの出水がみられなか った 2005 年 5 月~同年 8 月には約 9,000m³の 土砂が堆積し、 2008 年 5 月~同年 8 月には 約 17,000m³ 堆砂したが、その後 11 月までに 約 18,000m³の土砂が減少した。

宇多ら(1988)の深浅測量結果図(1985年

期間	土砂変化量 (m ³)	最大日平均 流量(m ³ /s)	日平均2m 波来襲日数 (日)	日平均3m波 来襲日数 (日)	日平均4m 波来襲日数 (日)
2004.9~2004.10	-111,000	940	2	1	0
2004.10~2005.5	+65,000	760	33	11	0
2005.5~2005.8	+9,000	160	0	0	0
2005.8~2005.10	-7,000	280	1	1	0
2005.10~2006.6	+73,000	300	45	5	4
2006.6~2006.8	-41,000	890	0	0	0
2006.8~2006.10	-15,000	330	4	1	0
2006.10~2007.8	+67,000	350	20	8	0
2007.8~2008.5	-15,000	380	30	9	0
2008.5~2008.8	+17,000	130	1	0	0
2008.8~2008.11	-18,000	130	2	0	0

表-2 河川流量・波浪と土砂変化量

11月から1986年3月まで)より土砂変化 量を計算すると約20,000m³の土砂が堆積して おり、調査結果と同様に0k000~0k400の土砂 移動の活発な範囲では、冬季に数万のオーダ ーで土砂が堆積することがわかる。

千代川の流量は、2月から6月の融雪期と

梅雨期に多い傾向があり、7月から11月まで の期間にしばしば短期的な大きな出水が発生 する。測量期間内では、日平均約700~900m³/s 程度の出水により河口の土砂はフラッシュさ れる。

以上より、千代川河口域において、冬季に は波浪の影響により堆砂が顕著であり、夏季 では、数年に1度程度の大きな出水(日平均 約 800m³/s 程度)により砂堆はフラッシュさ れることがわかった。前の堆砂状況に起因し ていると推測される。つまり、冬季を跨がな い期間では、大きな出水がない限り、堆積土 砂はある程度平衡状態を保っていると考えら れる。

3. サンドリサイクル事業による海岸保全3-1 サンドリサイクルの概要

鳥取砂丘海岸では、総合的土砂管理を目指 し平成17(2005)年からサンドリサイクル事 業が実施されている。鳥取県で行なわれてい るサンドリサイクル事業は、鳥取漁港および 塩見川河口に堆積した土砂を浚渫し(図-5(a))、鳥取砂丘海岸沖に土砂投入もしくは砂 丘の東側に陸養浜(土砂投入)する(図-5(b)) というものである。平成17(2005)年度から 平成21(2009)年度に実施された土砂投入実 績および投入位置を図-6に示す。

サンドリサイクルがはじまった平成 17 年度 には 85,000 m³もの土砂が投入されているが、 その後は、鳥取港から約 20,000 m³前後、塩見 川河口から約 10,000 m³程度浚渫され、それぞ れ土砂投入が行われている。

図-5(b) 土砂投入(海上)の様子

鳥取港の有義波高および波向きを図-7 に 示す。春季から夏季にかけては東よりの波浪 が卓越するため、土砂も東から西へ移動する。 秋季から冬季にかけては、西よりの波浪の来 襲頻度が高く、それにともなって土砂も西か ら東に移動する。また、高波浪の頻度が高い ことから秋季から冬季の土砂移動量は大きい。 このことを踏まえ、サンドリサイクルでは3 月~7月にかけて土砂投入を実施している。

投入土砂は春季~夏季の波浪の影響を受け て投入地点より西側へ移動していると推定で きる。その後、秋季から冬季にかけての北西 から北よりの強波浪によって、西側から東側 への土砂移動が生じる。このため、夏季まえ に西側に移動していた投入土砂の一部は東側 に戻される。

3-2 等深線変化量によるサンドリサイク ル効果の分析

鳥取砂丘前面(図-6 に示す側線 3k000 お よび 4k000)の等深線の経年変化を図-8 に 示す。縦軸は離岸距離を表しており、離岸距 離が大きくなることは汀線および等深線の前

図-6 サンドリサイクルの実施状況

図-7 波向き頻度分布図(2003年~2007年)

進(堆積傾向)を意味する。 2003 年以前の 詳細なデータはないが、1992 年から 2003 年 までは汀線および等深線は比較的安定してい る。しかし、2003 年から 2005 年 3 月までは 侵食傾向となっている。サンドリサイクル実 施後の 2005 年 9 月以降は、汀線がやや前進 しており、回復傾向にある。また、汀線のみ ならず、水深方向にも同じ傾向にある。

3-3 空中写真による汀線変化量の推定

図-9 に空中写真から読み取った汀線変化 量を示す。図-9(a)はサンドリサイクルが実 施される以前の 1997 年から 2003 年までの汀 線変化量、図-9(b)は 2003 年から 2008 年 までの汀線変化量である。サンドリサイクル 実施以前では、鳥取砂丘東側から人工リーフ までの海岸で侵食傾向を示しており、岩戸漁 港

のある 8.0k 付近および鳥取港防波堤の遮 蔽域である 2.0k 地点では、堆砂傾向にある。 また、3-2 で述べたように鳥取砂丘前面にお いては、比較的安定傾向を示していることが この図からもわかる。

一方、サンドリサイクル実施後は所々侵食 域が存在するものの、全体として堆積傾向に あるといえる。特に、増設された人工リーフ の背後では汀線前進していることが確認でき る。

鳥取砂丘前面では中央部から東側では最大 20m 程度の汀線の前進がみられるのに対して 中央部より西側では最大 20m 程度の後退がみ られ、侵食傾向である。

また、人工リーフの間(6.1~6.6k 地点) および人工リーフ設置場所の西側(4.5~4.9k 地点)において侵食が確認できる.4.5~4.9k 地点については、鳥取港の防波堤の遮蔽域の 境目であり、ここを境に土砂の移動が西と東 に分かれていると推測することができる。

千代川右岸近傍 (0.8~2.0k 地点) では 30m

程度の前進が確認でき、この付近は全体的に 堆積傾向といえる。

4. 短期間における汀線の岸沖変化

最後に、数ヶ月ないしは数十日の短期間に おける汀線変化を写真から明らかにする。写 真-1は、砂丘東側(4.5k地点付近)から東 側を撮影したものである。

夏季に前進した汀線は秋季から冬季にかけ 後退している。しかし、2010年3月5日と19 日を比較すると、わずか2週間の間に汀線が 著しく前進している。写真-2および3は5.0k

図-8 等深線の経年変化

地点から西側(砂丘側)を短期間に撮影し比 較したものである。2010年1月6日と18日 の汀線位置を比較すると、その違いは明らか である。

そこで、来襲波浪を調べると、1月6日の 数日前から日平均有義波高が2~3mの日が 続いていた。

一方、18日の数日前では比較的穏やかな波 浪(日平均有義波高1m~2m弱)であった。 2010年3月5日および19日では比較的穏や かな波浪が続いていたにも関わらず、汀線位 置に大きく違いがみられた。3月1日が大潮

であり、このことが関係していると考えられる。

本章では、深浅測量データ、空中写真、現 地踏査および撮影写真を用いて千代川河口域 および鳥取砂丘海岸の土砂移動について考察 してきた。千代川河口域の地形変動および季 節変動特性を明らかにし、海岸地形の長期的 な変動と土砂の偏在化による問題を明らかに した。また、2005 年から行なわれているサン ドリサイクル事業の効果についても検証し、 一定の効果があがっていることを確認した。

鳥取砂丘前面において、写真より汀線は短 期間でかなりの前進後退を繰り返しているこ とが明らかになった。この短期間の変化は、 来襲波浪の大きさや潮汐の影響を大きくうけ ているものと考えられる。 以上より、鳥取砂丘海岸はサンドリサイクル 事業や人工リーフ等により堆積あるいは安

5. おわりに

写真-1

定傾向あるといえる。しかし、サンドリサ イクルといったソフト的対策は継続的に行な っていく必要があると同時に、現在行なって いるモニタリング調査を続けその効果を常に 検証すること必要がある。

写真-2

写真-3

文献

宇多高明(1997):日本の海岸侵食、山海堂 pp. 307-310.

黒岩正光・松原雄平・石田雅博・吉津憲・三納正美・砂川真太朗・大本武・京住真志

(2008):鳥取県千代川河口域における地形変 化特性、海岸工学論文集、第 55 巻 pp.631-635.

宇多高明・福井次郎・竺原章之(1988):千代 川河口における波と流れによるダイナミック な地形変化の観測、第35回海岸工学論文集、 pp.452-456.

安本善征・宇多高明・松原雄平・佐藤臣愼司 (2006):鳥取沿岸の総合的な土砂管理ガイド ラインの策定と実施、海洋開発論文集、第22

巻、pp. 415-420.

平成 21 年度 鳥取県東部沿岸土砂管理協議 会説明資料